HERITAGE THERMAL SERVICES 1250 St. George Street East Liverpool, Ohio 43920-3400 Phone: 330-385-7337 Fax: 330-385-7813 www.heritage-thermal.com July 31, 2014 VIA UPS and OEPA AIR SERVICES Mr. George Czerniak, Chief (UPS) U.S. EPA Region V Air Enforcement and Compliance Assurance Branch Mail Code AE-17J 77 West Jackson Chicago, IL 60604 HERITAGE THERMAL SERVICES RE: SEMI-ANNUAL STARTUP, SHUTDOWN, AND MALFUNCTION REPORT & 2110 E. Aurora Road Twinsburg, OH 44087 SEMI-ANNUAL EXCESS EMISSIONS AND CMS REPORT Please find enclosed a written report entitled Semi-Annual Startup, Shutdown, and Malfunction Report and Semi-Annual Excess Emission and CMS Report for Heritage Thermal Services. These reports are required by 40 CFR 63.10 and cover the time period of January 1, 2014 through June 30, 2014. I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I arn aware that there are certain penalties for submitting false information including the possibility of fine and imprisonment for knowing violations. Thank you and if you have any questions or comments, please call me at the above number. Sincerely, Stewart Fletcher General Manager Heritage Thermal Services OHSAS 18001: 2007 ISO 14001: 2004 ISO 9001: 2008 # SEMI-ANNUAL STARTUP, SHUTDOWN, AND MALFUNCTION REPORT & SEMI-ANNUAL EXCESS EMISSION AND CMS REPORT For **Heritage Thermal Services** July 31, 2014 #### Section I - General Information #### A. Facility Information | Facility ID: | 02-15-02-0233 | \neg | |------------------------|---------------------------|--------| | Responsible Official's | Stewart Fletcher | | | Name / Title: | General Manager | | | Street Address: | 1250 Saint George Street | | | City: | East Liverpool | | | State: | Ohio | | | Zip Code: | 43920 | | | Facility Name: | Heritage Thermal Services | | | Facility Local Contact | Vincent Waggle | | | Name: | Environmental Engineer | | - B. Relevant standard(s) or other requirement(s) that is/are the basis for this report: - 63.10(d)(5)(i) Periodic Startup, Shutdown, and Malfunction Reports - C. Are you requesting a waiver of recordkeeping and/or reporting requirements under the applicable relevant standard(s) in conjunction with this report? | Yes | × | N | |-----|---|---| | | | | If you answered yes, you must submit the application for a waiver of recordkeeping and/or reporting requirements together with this report. The application for waiver should include whatever information you consider useful to convince the Administrator that a waiver of recordkeeping or recording is warranted. (63.10(f)(3) #### Section II - Certification Based upon information and belief formed after a reasonable inquiry, I as a responsible official of the above-mentioned facility, certify the information contained in this report is accurate and true to the best of my knowledge. | Stewart Fletcher, General Manager | | |-----------------------------------|---------------| | Signature: Att Ht | Date: 7-31-14 | #### Section III - Startup, Shutdown, and Malfunction Reports A. Startup, Shutdown, or Malfunction Actions All actions taken by Heritage Thermal Services during startup, shutdown, or malfunction events during the reporting period of **January 1, 2014 through June 30, 2014** were consistent with the procedures specified in the facility's Startup, Shutdown, and Malfunction Plan. #### B. Malfunctions Please find in the table below a list of each malfunction, the durations, and a brief description of the type of malfunction that occurred during the reporting period of January 1, 2014 through June 30, 2014. See next page for completed table | | | | | | Cause | Corrective | |--------------|--------------------|--------------------|----------|--|---|--| | Name | Start Time | End Time | Duration | Cause (report) | Description | Actions | | THC | 1/2/2014
14:11 | 1/2/2014
15:10 | 59.28 | Malfunction
Combustion
Anomaly | Unexpected and unpreventable combustion upset caused THC event. | Restarted unit.
Reviewed waste
feeds | | THC | 1/10/2014
20:43 | 1/10/2014
21:42 | 58.51 | Malfunction
Customer
Packaging Error | Improper customer packaging caused combustion upset and THC. | Restarted unit.
Contacted
customer. | | тнс | 1/11/2014
16:34 | 1/11/2014
16:58 | 24.43 | Malfunction
Lance Purge | Unexpected plug and purge of lance caused combustion upset and THC. | Cleared lance.
Restarted unit | | тнс | 1/17/2014
17:14 | 1/17/2014
18:14 | 60.10 | Malfunction Lance Plugging | Unexpected plug and purge of lance caused combustion upset and THC. | Cleared lance.
Restarted unit | | THC | 1/17/2014
18:36 | 1/17/2014
19:35 | 58.39 | Malfunction
Combustion
Anomaly | Unexpected and unpreventable combustion upset caused THC event. | Restarted unit. Reviewed waste feeds | | ESP Field #1 | 1/26/2014 | 1/26/2014 | | Malfunction | Unexpected ash
build-up on ESP
field led to drop | Stopped feeds.
Increased | | Current | 14:05 | 15:34 | 89.13 | Ash Build-up | in field current. | rapping. | | тнс | 1/30/2014
4:58 | 1/30/2014
5:59 | 61.00 | Malfunction
Lance Plugging | Unexpected plug and purge of lance caused combustion upset and THC. | Cleared lance.
Restarted unit | | THC | 2/5/2014
13:25 | 2/5/2014
14:24 | 59.07 | Malfunction
Combustion
Anomaly | Unexpected and unpreventable combustion upset caused THC event. | Restarted unit.
Reviewed waste
feeds | | | | | | | Cause | Corrective | |-------------------------|--------------------|--------------------|----------|--|---|--| | Name | Start Time | End Time | Duration | Cause (report) | Description | Actions | | ESP Field #1
Current | 2/8/2014
15:01 | 2/8/2014
15:33 | 32.12 | Malfunction
Ash Build-up | Ash build-up
caused reduced
power to the
ESP fields. | Increased rapping. Reduced load. | | THC | 2/9/2014
12:42 | 2/9/2014
12:43 | 1.08 | Malfunction
Lance Plugging | Lance plugging and unexpected purge caused poor combustion. | Cleared lance.
Restarted unit. | | THC | 2/11/2014
23:12 | 2/12/2014
0:12 | 59.58 | Malfunction
Combustion
Anomaly | Unexpected and unpreventable combustion upset caused THC event. | Restarted unit.
Reviewed waste
feeds | | SDA ECIS
Flow | 2/19/2014
17:30 | 2/19/2014
17:38 | 7.49 | Malfunction -
ECIS Screw
Plugged | Plugging of the
ECIS screw
caused flow
loss. | Cleared screw.
Restarted unit. | | тнс | 2/21/2014
15:05 | 2/21/2014
16:05 | 59.28 | Malfunction
Customer
Packaging Error | Improper customer packaging caused combustion upset and THC. | Restarted unit. Contacted customer. | | THC | 2/24/2014
17:40 | 2/24/2014
18:39 | 58.59 | Malfunction
Combustion
Anomaly | Unexpected and unpreventable combustion upset caused THC event. | Restarted unit.
Reviewed waste
feeds | | | | | | | Improper
customer
packaging | | | ТНС | 3/22/2014
9:28 | 3/22/2014
10:27 | 58.54 | Malfunction
Customer
Packaging Error | caused
combustion
upset and THC. | Restarted unit.
Contacted
customer. | | THC | 3/27/2014
15:50 | 3/27/2014
16:14 | | Malfunction
Combustion
Anomaly | Unexpected and unpreventable combustion upset caused THC event. | Restarted unit.
Reviewed waste
feeds | | | | | | | Cause | Corrective | |------------------|----------------------------|----------------------------|----------------|--|---|--| | Name | Start Time | End Time | Duration | Cause (report) | Description | Actions | | THC | 3/31/2014
3:23 | 3/31/2014
4:21 | 57.19 | Malfunction
Lance Plugging | Lance plugging and unexpected purge caused poor combustion. | Cleared lance.
Restarted unit. | | TUC | 4/3/2014 | 4/3/2014 | AC E2 | Malfunction | Lance plugging
and unexpected
purge caused
poor | Cleared lance. | | THC | 20:02
4/9/2014
17:23 | 20:48
4/9/2014
18:22 | 45.53
58.51 | Lance Plugging Malfunction Combustion Anomaly | combustion. Unexpected and unpreventable combustion upset caused THC event. | Restarted unit. Restarted unit. Reviewed waste feeds | | THC | 4/19/2014
14:51 | 4/19/2014
15:50 | 58.53 | Malfunction
Lance Plugging | Lance plugging and unexpected purge caused poor combustion. | Cleared lance.
Restarted unit. | | THC | 4/25/2014
17:20 | 4/25/2014
18:17 | 56.42 | Malfunction
Lance Plugging | Lance plugging and unexpected purge caused poor combustion. | Cleared lance.
Restarted unit. | | THC | 4/26/2014
1:29 | 4/26/2014
2:27 | 57.50 | Malfunction
Combustion
Anomaly | Unexpected and unpreventable combustion upset caused THC event. | Restarted unit.
Reviewed waste
feeds | | | ï | | | Malfunction | Unit taken off | WFCO initiated for repairs. | | Total PB
Flow | 4/28/2014
11:58 | 4/28/2014
12:38 | 40.09 | Scrubber
Maintenance | waste to repair scrubber leak. | Repaired piping. | | Total PB
Flow | 5/1/2014 9:19 | 5/1/2014
10:42 | 82.54 | Malfunction
Scrubber
Maintenance | Unit taken off
waste to repair
scrubber leak. | WFCO initiated
for repairs.
Repaired
piping. | | Total PB
Flow | 5/1/2014
10:58 | 5/1/2014
11:09 | 10.57 | Malfunction
Scrubber
Maintenance | Unit taken off
waste to repair
scrubber leak. | WFCO initiated
for repairs.
Repaired
piping. | | | i di kadan da kada da ka | cerel New Springstance | and replacement the | | Cause | Corrective | |--------------|--------------------------|---|---------------------|----------------------------|------------------|---------------------------------| | Name | Start Time | End Time | Duration_ | Cause (report) | Description | Actions | | Tranic and | Juan Chine | (re) - 0 - 13 - 13 - 13 - 13 - 13 - 13 - 13 | Duration | an course (i cporty) | Failure of | Analysis Monoilogy const. | | | | | | Malfunction | scrubber pumps | Repaired | | SCC Pressure | 5/12/2014 | 5/12/2014 | | Scrubber | caused ID Fan | pumps. | | Using Seals | 3:51 | 3:52 | 0.35 | Pumps | stop. | Restarted unit. | | | | | | | Failure of | | | | | | | Malfunction | scrubber pumps | Repaired | | | 5/12/2014 | 5/12/2014 | | Scrubber | caused ID Fan | pumps. | | RJ DP | 3:59 | 5:03 | 63.07 | Pumps | stop. | Restarted unit. | | | | | | | Storm caused a | | | | | | - | | power outage | | | | | | | | causing | Restored | | Scrubber | 5/13/2014 | 5/13/2014 | | Malfunction | shutdown of | power. | | ECIS Flow | 0:17 | 0:50 | 32.56 | Power Failure | ECIS. | Restarted unit. | | | | | | | Ash build-up on | Manual WFCO. | | ESP Field #1 | 5/15/2014 | 5/15/2014 | | Malfunction | ESP field caused | Increased | | Current | 16:07 | 16:52 | 44.53 | Ash Build-up | low current | rapping. | | | | | | | Direct tanker | | | | [
] | | | | lance plugged | | | | | | | | and purged | | | _ | 5/15/2014 | 5/15/2014 | | Malfunction | causing THC | Cleaned lance. | | THC | 18:39 | 19:28 | 49.01 | Lance Plugging | spike. | Restarted unit. | | ٠ | | | | | Unexpected | | | | | | | | and | | | | | | | | unpreventable | <u> </u> | | | | _ | | Malfunction | combustion | Restarted unit. | | 7.10 | 5/17/2014 | 5/17/2014 | 50.52 | Combustion | upset caused | Reviewed waste | | THC | 10:39 | 11:38 | 58.53 | Anomaly | THC event. | feeds | | | | | | | Slag buildup on | * | | | 5/27/2014 | E /27 /204 A | | na ic | lance caused | ci u | | TUC | 5/27/2014 | 5/27/2014 | | Malfunction | poor combustion. | Cleaned lance. | | THC . | 10:45 | 11:44 | 58.47 | Lance Slagging | | Restarted unit. | | | | | | | Slag buildup on | | | | E /20/2014 | E /20 /204 4 | | Malf | lance caused | Cloomod | | THC | 5/28/2014
14:35 | 5/28/2014
14:46 | 10.54 | Malfunction Lance Slagging | combustion. | Cleaned lance. Restarted unit. | | INC | 14.35 | 14.40 | 10.54 | rance stagging | Hi BTU lance | nestarted unit. | | | | | 1 | | plugged and | | | | | | | | purged causing | | | | 5/28/2014 | 5/28/2014 | | Malfunction | poor | Cleared lance. | | THC | 16:14 | 17:14 | 59.57 | Lance plugging | combustion | Restarted unit. | | | | | | - 1 | | | | | | | | | Sludge lance | | | | | | | | plugged and | | | | | | | | purged causing | | | | 5/29/2014 | 5/29/2014 | | Malfunction | poor | Cleared lance. | | THC | 18:32 | 19:18 | 45.59 | Lance plugging | combustion | Restarted unit. | | | emizoa erakardan | | | | Cause | Corrective | |-----------------------------|--------------------|--------------------|----------|--|--|---| | Name | Start Time | End Time | Duration | Cause (report) | Description | Actions | | SCC
Temperature | 6/1/2014
17:39 | 6/1/2014
17:48 | 8.52 | Malfunction
Tank Layering | Unexpected tank layering caused temperature loss. | Introduced
additional fuel.
Restarted unit. | | SCC Pressure
Using Seals | 6/2/2014 3:50 | 6/2/2014 3:51 | 0.30 | Malfunction
Clinker Fell | Small ash fall
caused brief
and sudden
pressure spike. | Maintained
draft. Restarted
unit. | | ESP Field #1
Current | 6/17/2014
0:49 | 6/17/2014
1:42 | 53.14 | Malfunction
Excess Ash
Build-up | Excessive ash build up on ESP plates caused low current | Manual WFCO.
Increased
rapping | | ESP Field #1
Current | 6/17/2014
12:24 | 6/17/2014
13:13 | 48.55 | Malfunction
Excess Ash
Build-up | Excessive ash
build up on ESP
plates caused
low current | Manual WFCO. Increased rapping | | THC | 6/26/2014
3:33 | 6/26/2014
4:32 | 58.49 | Malfunction
Lance Plugging | Unexpected plug and purge of lance caused poor combustion. | Cleared lance.
Restarted unit. | | THC | 6/28/2014
10:05 | 6/28/2014
11:03 | 58.04 | Malfunction
Customer
Packaging Error | Improper customer packaging caused combustion upset and THC. | Restarted unit. Contacted customer. | # C. Startup, Shutdown, or Malfunction Plan Revision History | DATE | Revision Number | Comment | |------------|-----------------|--| | 9/30/2003 | 0 | Initial Plan | | 2/27/2004 | 1 | ESP OPLs added. Malfunction list updated. | | 6/23/2005 | 2 | Revised section on operating modes. | | 10/27/2006 | 3 | RCRA Permit modifications. Malfunction list updated. | | 3/15/2007 | 4 | Malfunction list updated and comments added addressing instances beyond the operator's control. | | 6/6/2007 | 5 | Malfunction list updated and further comments added addressing instances beyond the operator's control. | | 10/16/2007 | 6 | Corrected minor deficiencies noted by OEPA. | | 9/1/2008 | 7 | Revised to reflect facility name change | | 6/12/2009 | . 8 | This revision included, in Section 1.6.3.1, more detailed descriptions of the most common malfunction events that occur at the facility. It also included a description of data collection procedures during times when residence time expires while an exceedance event is taking place in Section 1.6.3. | | 2/9/2011 | 9 | Revision created to reflect OPL changes resulting from the MACT CPT completed in 2010. Additionally, new malfunctions were added to Table 2-2. | | | | Revision incorporated a discussion of the exceedance investigation process and procedures. Table 2-2 was also slightly revised to include addition malfunctions. | | 7/5/2012 | 10 | Revision 11 (7/5/2012) created to improve language surrounding the reporting and documentation during startup and shutdown events. | | 10/15/2013 | 12 | Revision 12 (10/15/2013) created to account for facility name change. | #### SEMI-ANNUAL EXCESS EMISSION AND CMS REPORT # Section I – General Information A. Facility Information | Facility ID: | 02-15-0233 | |--|---| | Responsible Official's | Stewart Fletcher / General Manager | | Name / Title: | | | Street Address: | 1250 Saint George Street | | City: | East Liverpool | | State: | Ohio | | Zip Code: | 43920 | | Facility Name: | Heritage Thermal Services | | Facility Local Contact | Vincent Waggle | | Name: | Environmental Engineer | | | vaiver of recordkeeping and/or reporting requirements under the ard(s) in conjunction with this report? | | ☐ Yes ☐ | No No | | reporting requirements to whatever information you | must submit the application for a waiver of recordkeeping and/or gether with this report. The application for waiver should include a consider useful to convince the Administrator that a waiver of ag is warranted. (63.10(f)(3)) | | D. Check the box that cor | rresponds to the reports you are submitting: | | | | | ☐ Summary Rep | port Only (Complete Sections II and IV) | | | sion and CMS Performance Report and Summary Report (Complete | # Section II - Certification fficial of nd true | Based upon information and belief formed after
the above-mentioned facility, certify the information to the best of my knowledge. | * * * | |--|---------------| | Stewart Fletcher, General Manager Signature: | Date: 7-31-14 | | Pag | e 11 of 26 | # Section III - Excess Emissions and CMS Performance Report | \cdot | |---| | A. Excess Emissions | | Have any excess emissions or exceedances of a parameter occurred during this reporting period? Yes □ No | | 2. If you answered yes, complete the following table for each period of excess emissions and/or parameter monitoring exceedances, as defined in the relevant standard(s), that occurred during periods other than startups, shutdowns, and/or malfunctions of your affected source. (63.10(c)(7)(11)) | | | | | | | See next page for completed table. | Name | Start Time | End Time | Duration | Cause (report) | Cause Description | Corrective
Actions | |------------------|--------------------|----------------------|----------|---------------------------------------|--|---| | THC | 1/6/2014
19:55 | 1/6/2014
20:54 | 59.09 | Operator
Error Feed
Prep | Improper waste preparation led to combustion upset and THC. | Restarted unit. Revised procedure. | | THC | 1/16/2014
3:21 | 1/16/2014
4:22 | 60.26 | Operator
Error Feed
Prep | Improper waste preparation led to combustion upset and THC. Improper waste | Restarted unit. | | THC | 1/28/2014
19:14 | 1/28/2014
19:27 | 12.26 | Operator
Error Feed
Prep | preparation led to combustion upset and THC. | Restarted unit.
Revised feed
instructions | | SDA ECIS
Flow | 2/18/2014
8:17 | 2/18/2014
8:43 | 26.37 | Operator
Error - Poor
Operation | Waste feed initiated without sufficient ECIS flow. | Restarted unit.
Re-trained
operators. | | THC | 2/22/2014
0:30 | 2/22/2014
1:30 | 59.59 | Operator
Error Feed
Prep | Improper waste preparation led to combustion upset and THC. | Restarted unit.
Reduced
charges. | | THC | 2/26/2014
10:53 | 2/26/2014
, 11:47 | 54.15 | Operator
Error Feed
Prep | Improper waste preparation led to combustion upset and THC. | Restarted unit.
Reduced
charges. | | THC | 3/4/2014
0:02 | 3/4/2014
0:57 | 54.15 | Operator
Error Feed
Weight | Lance plugging and unexpected purge caused poor combustion. | Restarted unit. Reduced charges. | | RJ DP | 3/26/2014
10:34 | 3/26/2014
11:25 | 51.10 | Operator
Error Poor
operation | Operator inadvertently caused WFCO by selecting wrong transmitter. | Error
corrected.
Restarted unit | | тнс | 4/11/2014
12:04 | 4/11/2014
13:03 | 58.53 | Operator
Error Feed
Prep | Improper waste preparation led to combustion upset and THC. | Changed feed prep. Restarted unit. | | THC | 4/14/2014
18:31 | 4/14/2014
19:30 | 58.53 | Operator
Error Feed
Prep | Improper waste preparation led to combustion upset and THC. | Solidify
material.
Restart unit. | | THC | 4/19/2014
6:35 | 4/19/2014
7:35 | 59.58 | Operator
Error Feed
Prep | Improper waste preparation led to combustion upset and THC. | Changed feed prep. Restarted unit. | | Name | Start Time | End Time | Duration | Cause | | Corrective | |--------------------|--------------------|--------------------|----------|---|---|---| | THC | 4/24/2014
21:27 | 4/24/2014
22:26 | 59.24 | (report) Operator Error Feed Prep | Cause Description Improper waste preparation led to combustion upset and THC. | Actions Changed feed prep. Restarted unit. | | THC | 4/27/2014
15:14 | 4/27/2014
16:14 | 60.02 | Operator
Error Feed
Prep | Improper waste preparation led to combustion upset and THC. | Restarted unit.
Requested
more info from
customer. | | SCC
Temperature | 4/28/2014
10:41 | 4/28/2014
10:54 | 12.38 | Operator
Error Poor
Operation | Operator failed to maintain operating temperature. | Temperature regained. Unit restarted. Operator retrained. | | THC | 5/17/2014
21:37 | 5/17/2014
22:37 | 60.00 | Operator
Error Feed
Prep | Improper feed prep
led to poor
combustion and
THC event. | Corrected
problem.
Restarted unit. | | Scrubber pH | 5/18/2014
6:41 | 5/18/2014
7:38 | 56.54 | Operator
Error Poor
Maintenance | Poor maintenance
led to caustic pump
failure and pH loss. | Corrected problem. Restarted unit. | | THC | 5/28/2014
18:50 | 5/28/2014
19:46 | 55.49 | Operator
Error
Improper
Line Purge | Operator flushed lance at too high rate causing THC. | Reduced flow.
Restarted
lance. | | тнс | 5/29/2014
10:42 | 5/29/2014
11:10 | 28.08 | Operator
Error Poor
Operation | Poor lance control caused poor combustiobn and THC. | Steadied lance
flow. Restarted
unit. | | | | | | | Overfeed of direct burn material | | | THC | 5/29/2014
14:03 | 4 | 19.52 | Operator
Error Poor
Operation | caused poor
combustion and
THC. | Reduced flow.
Restarted unit. | | THC | 6/29/2014
17:01 | 1 | 60.03 | Operator
Error Feed
Mix | Poor feed mix led
to poor
combustion and
THC. | Restarted unit.
Spaced out
feeds. | #### B. CMS Performance - 1. Has a CMS been inoperative (except for zero/low-level and high-level checks), out of control (as defined in 63.8(c)(7)(i)), repaired, or adjusted during this reporting period? \square Yes \boxtimes No - 2. If you answered yes, complete the following table for each period a CMS was out of control, repaired, or adjusted: (63.10(c)(5)-(6), (10)-(12); 63.8(c)(8). | CMS
Type | Mfg | Process
ID | Start Date | Completion Date | Nature & Cause
of Malfunction
(if any) | Corrective
Actions Taken
or Preventative
Measures
Adopted | Nature of Repairs or Adjustments Made to Inoperable or OOC CMS | |-------------|--------|---------------------|------------|-----------------|--|---|--| | Wet O2 | Ametex | Stack
monitor #2 | 5/12/2014 | | Data
Communication | 1 | Hardware
replacement | 3. Indicate the total process operating time during the reporting period. (63.10(c)(13)) Total process operating time (days): Days in reporting period: 181 Facility total process operating time (days): 170.36 Total days on waste: 166.79 Total days on fuels: 3.58 # <u>Section IV – Summary Report – Gaseous and Opacity Excess Emissions and CMS Performance</u> #### A. Report Date and Submittal Reporting Period Indicate the reporting period covered by this submittal and the date of this summary report. (63.10(e)(3)(vi)) | Reporting Period beginning date | Reporting Period ending date | Summary Report Date | |---------------------------------|------------------------------|---------------------| | January 1, 2014 | June 30, 2014 | July 31, 2014 | #### **B. Process Description and Monitoring Equipment Information** Complete the following process description and monitoring equipment information table for each affected source process unit: | Total operating time of affected source during the reporting period (days) | |--| | 240,176 minutes of unit burning/ retaining hazardous waste; 5,148 minutes on virgin fuels. | | Process unit name | | |---------------------------------|--| | Rotary Kiln Incineration System | | | Process unit description | |---| | Rotary kiln and ancillary equipment for combustion of hazardous wastes. | Emission and/or operating parameter limitations specified in the relevant standards See Table 1 and 2 below. | Emissions Parameter | Limit | Citation | |--|-------------------------|--------------------------| | Destruction and Removal Efficiency (DRE) | ≥99.99% | 40 CFR 63.1203(c)(1) | | PCDDs/PCDFs | ≤0.20 ng/dscm TEQ basis | 40 CFR 63.1219(a)(1)(i) | | HCl/Cl ₂ | ≤ 32 ppmv dry as HCl | 40 CFR 63.1219(a)(6) | | Mercury | ≤ 130 μg/dscm | 40 CFR 63.1219(a)(2) | | Semi volatile Metals (SVM) | ≤ 230 μg/dscm | 40 CFR 63.1219(a)(3) | | Low Volatile Metals (LVM) | ≤ 92 μg/dscm | 40 CFR 63.1219(a)(4) | | Totals Hydrocarbons | ≤ 10 ppmv | 40 CFR 63.1219(a)(5)(ii) | | Particulate Matter (PM) | ≤ 0.013 gr/dscf or | 40 CFR 63.1219(a)(7) | | | 34 mg/dscm | | #### TABLE 2 – OPERATING PARAMETERS | Process Parameter (Tag ID) | Units | Avg.
Period | Basis | Limit | |---|------------|--|-----------|--------| | Minimum Feed Lance Atomization
Pressure ¹ | Psig | Instant. | Mfg. Rec. | 30 | | Maximum SCC Pressure (PT-4307 & PT-4308) | In. w.c. | Reference September 4, 2003 letter from US EPA Region 5 concerning this requirement. | | | | Maximum Temperature at ESP Inlet (TI-6002A/B) | °F | 1-hr | CPT | 424 | | Maximum Pumpable Waste Feed Rate (WQI-9000T) | Lb/hr | 1-hr | CPT | 29,926 | | Maximum Total Waste Feed Rate (WQI-9000F) | Lb/hr | 1-hr | CPT | 35,069 | | Minimum Kiln Temperature (TI-4300A/B) | °F | 1-hr | CPT | 1,718 | | Minimum SCC Temperature (TI-4310A/B) | o P | 1-hr | CPT | 1,747 | | Maximum Process Gas Flow rate (FI-7510A/B) | Scfm | 1-hr | CPT | 67,505 | | Minimum Loc. 1 Carbon Feed Rate (WI-7003) | Lb/hr | 1-hr | CPT | | | Minimum Loc. 2 Carbon Feed Rate (WI-7002) | Lb/hr | 1-hr | CPT | | | Minimum Loc. 1 Carbon Feed Pressure (PI-5732) | Psig | 1-hr | CPT | 3.0 | ¹ Each liquid lance has a pressure switch. When the pressure drops below 30 psig on any lance the feed from that lance will be automatically cutoff. Tag Ids: PSL-3113 (High BTU), PSL-3123 (Organic), PSL-3143 (Aqueous), PSL-3133 (Sludge), PSL-3153 (Slurry), and PSL-3100A/B (Sludge 2). Page 17 of 26 | Process Parameter (Tag ID) | Units | Avg.
Period | Basis | Limit | |--|--|----------------|------------------------------|----------------------| | Minimum Loc. 2 Carbon Feed Pressure (PI-7132) | Psig | 1-hr | CPT | 3.0 | | Maximum Ash Feed Rate (WQI-
9000AH) | Lb/hr | 12-hr | CPT | 10,333 | | Minimum Ring Jet Pressure Drop (DPI-7401) | in. w.c. | 1-hr | CPT | 28.0 | | Minimum Scrubber (1 st and 2 nd Packed
Bed, combined) Liquid Flow Rate (FQI-
7201) | gpm | 1-hr | СРТ | 1,287 | | Minimum Scrubber (Ring Jet) Liquid
Flow Rate (FI-7404A/B) | gpm | 1-hr | CPT | 446 | | Minimum Scrubber (Ring Jet)
Blowdown (FI-7403) | gpm | 1-hr | CPT | 19.5 | | Minimum Scrubber (Ring Jet) Tank
Level (LIC-7401) | feet | 1-hг | CPT | 1.7 | | ESP Parameters | The ESP is operating with all fields available with set points of 45,000 volts and 90 sparks per minute, each field and minimum current of 100 milliamps, each field (see UEPA letters dated Dec. 10 and Dec. 27, 2003). | | | | | Minimum Scrubber (1st and 2nd Packed
Bed, combined) Feed Pressure | in. w.c. | 1-hr | Mfg. Rec. | Not Req'd. | | Minimum Scrubber (1 st and 2 nd Packed
Bed) Pressure Drop | in. w.c. | 1-hr | Mfg. Rec. | 1.3 | | Minimum Scrubber (3 rd Stage) Liquid pH (AI-7307A/B) | pH units | 1-hr | Prior Testing | | | Maximum Total Chlorine Feed Rate | | | | 7.6 | | (WQI-9000CL) | Lb/hr | 12-hr | Prior Testing | 7.6
2,032 | | | Lb/hr
Lb/hr | 12-hr
12-hr | Prior Testing Prior Testing | | | (WQI-9000CL) Maximum Total Semi volatile Metals | | | _ | 2,032 | | (WQI-9000CL) Maximum Total Semi volatile Metals Feed Rate (WQI-9000SV) Maximum Total Low Volatile Metals | Lb/hr | 12-hr | Prior Testing | 2,032 | | (WQI-9000CL) Maximum Total Semi volatile Metals Feed Rate (WQI-9000SV) Maximum Total Low Volatile Metals Feed Rate (WQI-9000LV) Maximum Total Pumpable Low Volatile | Lb/hr
Lb/hr | 12-hr | Prior Testing Prior Testing | 2,032
83.2
400 | # **Monitoring Equipment Information** | Monitored Parameter | Instrument Description | Range and Units | Tag Number | Last
Calibration/Audit
Date | Accuracy of
Measurement | |--|--|------------------|------------|-----------------------------------|----------------------------| | Power -ESP Field #1 | Environmental
Elements Controller | 0 – 500 ma | EI-6700 | 6/5/2014 | N/A | | Power -ESP Field #2 | Environmental
Elements Controller | 0 – 500 ma | EI-6710 | 6/5/2014 | N/A | | Power -ESP Field #3 | Environmental
Elements Controller | 0 – 750 ma | EI-6720 | 6/5/2014 | N/A | | Scrubber Second Packed
Bed Liquid PH | Electro-Chemical
Devices | 0 – 14 pH units | AT-7307A | Performed
Weekly | ± 5% of range | | Scrubber Second Packed
Bed Liquid PH | Electro-Chemical
Devices | 0 – 14 pH units | AT-7307B | Performed
Weekly | ±5% of range | | Scrubber 2nd Packed Bed
Differential Pressure | Rosemount
Transmitter /Pressure
transducer | 0 – 8 in w.c. | DPT-7307 | 6/12/2014 | ±2% of range | | Pumpable Feed Rate
High BTU Lance | Micromotion Mass
Flow Meter | 0 – 10,000 lb/hr | FT-3110 | 6/16/2014 | ± 10% of range | | Pumpable Feed Rate
Organic Lance | Micromotion Mass
Flow Meter | 0 – 10,000 lb/hr | FT-3120 | 6/16/2014 | ± 10% of range | | Pumpable Feed Rate
Sludge Lance | Positive
displacement pump
(calculation) | 0 – 15,000 lb/hr | FT-3130 | Not Applicable
(calculation) | N/A | | Pumpable Feed Rate
Aqueous Lance | Micromotion Mass
Flow Meter | 0 – 10,000 lb/hr | FT-3140 | 6/16/2014 | ± 10% of range | | Pumpable Feed Rate
Slurry Lance | Positive
displacement pump
(calculation) | 0 – 15,000 lb/hr | FT-3150 | Not Applicable
(calculation) | N/A | | Scrubber First Packed bed flow rate | PolySonics Doppler
Flow | 0 – 1,500 gpm | FT-7204A | 6/17/2014 | ± 10% of range | | Monitored Parameter | Instrument
Description | Range and Units
of Measurement | Tag Number | Last
Calibration/Audit
Date | Accuracy of
Measurement | |---|--|-----------------------------------|------------|-----------------------------------|----------------------------| | Scrubber First Packed bed flow rate | Panametrics
Ultrasonic Flow | 0 – 1,500 gpm | FT-7204B | 6/17/2014 | ± 10% of range | | Scrubber Second Packed
bed flow rate | PolySonics Doppler
Flow | 0 – 1,500 gpm | FŢ-7304A | 6/17/2014 | ± 10% of range | | Scrubber Second Packed
bed flow rate | Panametrics
Ultrasonic Flow | 0 – 1,500 gpm | FT-7304B | 6/17/2014 | ± 10% of range | | Ring Jet Blow Down | Panametrics
Ultrasonic Flow | 0 – 500 gpm | FT-7403A | 6/17/2014 | ± 10% of range | | Ring Jet Blow Down | Panametrics
Ultrasonic Flow | 0 – 500 gpm | FT-7403B | 6/17/2014 | ± 10% of range | | Scrubber Ring Jet Liquid
Flow Rate | Panametrics
Ultrasonic Flow | 0 – 1,500 gpm | FT-7404A | 6/17/2014 | ± 10% of range | | Scrubber Ring Jet Liquid
Flow Rate | Panametrics
Ultrasonic Flow | 0 – 1,500 gpm | FT-7404B | 6/17/2014 | ± 10% of range | | Ring Jet Vessel Level | Rosemount
Transmitter/ Pressure | 0 – 5 feet | LT-7401A | 6/12/2014 | ±2% of range | | Ring Jet Vessel Level | Rosemount
Transmitter/ Pressure | 0 – 5 feet | LT-7401B | 6/12/2014 | ±2% of range | | Kiln Inlet Shroud (differential) Pressure (reference to SCC) | Rosemount Pressure transducer | 0 - 10 in. w.c. | PDT-4305 | 6/11/2014 | ±2% of range | | Kiln Outlet Shroud
(differential) Pressure
(reference to SCC) | Rosemount Pressure transducer | 0 - 10 in. w.c. | PDT-4306 | 6/12/2014 | ± 2% of range | | Kiln Inlet Shroud Pressure
(reference to ambient) | Rosemount Pressure transducer | 0 - 10 in. w.c. | PT-4307 | 6/12/2014 | ± 2% of range | | Scrubber 1st Packed Bed
Differential Pressure | Rosemount
Transmitter /Pressure
transducer | 0 – 8 in w.c. | PDT-7207 | 6/12/2014 | ± 2% of range | | Monitored Parameter | Instrument
Description | Range and Units
of Measurement | Tag Number | Last
Calibration/Audit
Date | Accuracy of
Measurement | |--|---|-----------------------------------|------------------------|-----------------------------------|----------------------------| | Ring Jet Differential
Pressure | Rosemount
Transmitter/ Pressure | 0 – 40 in w.c.
(changed 2005) | PDT-7401A
PDT-7405A | 6/12/2014 | ± 2% of range | | Ring Jet Differential
Pressure | Rosemount
Transmitter/ Pressure | 0 – 40 in w.c.
(changed 2005) | PDT-7401B
PDT-7405B | 6/11/2014 | ± 2% of range | | Sludge 2 Lance Atomizing
Pressure | Generic pressure
switch | 0 – 50 psi | PSL-3100A | 6/11/2014 | ±5% of range | | Sludge 2 Lance Atomizing
Pressure | Generic pressure
switch | 0 – 50 psi | PSL-3100B | 6/11/2014 | ±5% of range | | High Btu Lance Atomizing
Pressure | Generic pressure
switch | 0 – 50 psi | PSL-3113 | 6/11/2014 | ± 5% of range | | Organic Lance Atomizing
Pressure | Generic pressure
switch | 0 – 50 psi | PSL-3123 | 6/11/2014 | ±5% of range | | Sludge Lance Atomizing
Pressure | Generic pressure
switch | 0 – 50 psi | PSL-3133 | 6/11/2014 | ± 5% of range | | Aqueous Lance Atomizing
Pressure | Generic pressure
switch | 0 – 50 psi | PSL-3143 | 6/11/2014 | ± 5% of range | | Slurry Lance Atomizing
Pressure | Generic pressure
switch | 0 50 psi | PSL-3153 | 6/11/2014 | ± 5% of range | | Kiln / Secondary Combustion Chamber | Rosemount Transmitter / | -3.5 - +2.5 in. | PT-4300A | WFCO Test done | ±2% of range | | Pressure | Pressure transducer | w.c. | 11 130011 | every 3 weeks | ± 2% of range | | Kiln / Secondary
Combustion Chamber
Pressure | Rosemount
Transmitter /
Pressure transducer | -3.5 - +2.5 in.
w.c. | PT-4300B | WFCO Test done
every 3 weeks | ±2% of range | | Spray Dryer Carbon
Carrier Fluid Pressure | Rosemount
Transmitter /
Pressure | 0 – 15 psi | PT-5732 | 6/11/2014 | ±2% of range | | Scrubber Carbon Carrier
Fluid Pressure | Rosemount
Transmitter /
Pressure | 0 – 15 psi | PT-7132 | 6/11/2014 | ± 2% of range | | | | | | Last | | |---|--|--------------------------------|----------------------|---------------------------------|-------------------------| | Monitored Parameter | Instrument
Description | Range and Units of Measurement | Tag Number | Calibration/Audit Date | Accuracy of Measurement | | ESP Inlet Temperature | Rosemount
Transmitter /
Thermocouple | 0 - 600 °F | TT-6002A | WFCO Test done
every 3 weeks | ± 2% of range | | ESP Inlet Temperature | Rosemount
Transmitter /
Thermocouple | 0 - 600 °F | TT-6002B | WFCO Test done
every 3 weeks | ± 2% of range | | Kiln Temperature | Land CD1
Thermometer | 752 – 3272 °F | TT-4300A | 1/29/2014 | ±1% of range | | Kiln Temperature | Land CD1
Thermometer | 752 – 3272 °F | TT-4300B | 8/23/2013 | ±1% of range | | Secondary Combustion
Chamber Temperature | Land CD1
Thermometer | 752 – 3272 °F | TT-4310A | 7/22/2013 | ± 1% of range | | Secondary Combustion
Chamber Temperature | Land CD1
Thermometer | 752 – 3272 °F | TT-4310B | 3/25/2014 | ± 1% of range | | Pumpable Feed Rate
Direct Drum Scale A | Generic Load Cell
(Loss in weight
calculation) | 0 – 5,000 іь | WT-3050 | 5/10/2014 | ±3% of range | | Pumpable Feeds
Direct Drum Scale B | Generic Load Cell
(Loss in weight
calculation) | 0 – 5,000 lb | WT-3055 | 5/10/2014 | ±3% of range | | Pumpable FeedsTanker
Scale A (South Bay) | Generic Load Cell.
Loss in weight
calculation | 0 – 80,000 ІЬ | WT-3060 | 5/10/2014 | ±3% of range | | Pumpable Feeds Tanker Scale B (East Bay) | | | WT-3065 | 5/10/2014 | ± 3% of range | | Conveyor Scale Drum
Processing | Generic Load Cell
(Scale) | 0 – 2,000 lb | WT-3070
ARTS Data | 5/10/2014 | ±3% of range | | Splitting Scale Drum
Processing | Generic Load Cell
(Scale) | 0 – 5,000 lb | WT-3075
ARTS Data | 5/10/2014 | ±3% of range | | Floor Scale Drum
Processing Lab Pack | Generic Load Cell
(Scale) | 0 – 2,000 lb | WT-3080
ARTS Data | 5/10/2014 | ±3% of range | | Monitored Parameter | Instrument
Description | Range and Units | Tag Number | Last
Calibration/Audit
Date | Accuracy of
Measurement | |---|---|--|-------------------|-----------------------------------|--| | Kiln Bulk Feed Crane | Generic Load Cell
(Scale) | 0 – 10,000 lb | WT-3105 5/10/2014 | | ± 3% of range | | Scrubber Carbon Feed Rate | Generic Load Cell /
Loss in Weight
Feeder | 0 – 50 lb/hr | WT-7002 | 5/10/2014 | ± 1% of range | | Spray Dryer Carbon Feed
Rate | Generic Load Cell /
Loss in Weight
Feeder | 0 – 50 lb/hr | WT-7003 | 5/10/2014 | ± 1% of range | | Total Hydrocarbon
Analyzer (Stack) | California Analytical
Instruments, Inc. | 0 – 100 ppm
0 – 500 ppm
as Propane | AI-7850A | 6/16/2014 | £ ± 5% of span | | Total Hydrocarbon
Analyzer (Stack) | California Analytical
Instruments, Inc. | 0 – 100 ppm
0 – 500 ppm
as Propane | AI-7850B | 6/16/2014 | £ ± 5% of span | | Stack Oxygen Analyzers
(dry) | Ametek | 0 – 25 % | AI-7860A | 6/16/2014 | ± 1.0% Oxygen | | Stack Oxygen Analyzers (dry) | Ametek | 0 - 25 % | AI-7860B | 6/16/2014 | ± 1.0% Oxygen | | Stack Oxygen Analyzers
(wet) | Ametek | 0 – 25 % | AI-7865A | 6/16/2014 | ± 1.0% Oxygen | | Stack Oxygen Analyzers
(wet) | Ametek | 0-25 % | AI-7865B | 6/16/2014 | ± 1.0% Oxygen | | Flue Gas Flow Rate
(Scrubber Outlet) | Calculation
Stack - Reheat Flow | 0 – 80,000 scfm | FT-7510A | 6/16/2014 | < 15% relative accuracy or < 7.5% of the applicable standard | | Flue Gas Flow Rate
(Scrubber Outlet) | United Sciences
UltraSonic Gas Flow | 0 – 80,000 scfm | FT-7510B | 6/16/2014 | < 15% relative
accuracy or < 7.5% of
the applicable standard | | Flue Gas Flow Rate (Stack) | United Sciences
UltraSonic Gas Flow | 0 – 100,000 scfm | FT-7805A | 6/16/2014 | < 15% relative
accuracy or < 7.5% of
the applicable standard | | Monitored Parameter | Instrument
Description | Range and Units | Tag Number | Last
Calibration/Audit
Date | Accuracy of
Measurement | |----------------------------|---|------------------|------------|-----------------------------------|--| | Flue Gas Flow Rate (Stack) | Calculation
Process + Reheat
Flow | 0 – 100,000 scfm | FT-7805B | 6/16/2014 | < 15% relative
accuracy or < 7.5% of
the applicable standard | #### C. Emission Data Summary Complete the following emission data summary table for each affected source: (63.10(e)(3)(vi)(l)) Total duration of excess emission / parameter exceedances (minutes for opacity, hours for gases) | Excess Emissions | Total
Duration(min) | Total Operating time of affected source during the reporting period (min) | % Of total Source operating time during which excess emissions occurred | |---|------------------------|---|---| | Maximum Ash Feed Rate (WQI-
9000AH) | 0 | 245,324 | 0.00% | | Maximum Process Gas Flowrate (FI-7510A/B) | 0 | . 245,324 | 0.00% | | Maximum Pumpable Waste Feed Rate
(WQI-9000T) | 0 | 245,324 | 0.00% | | Maximum SCC Pressure (PI-4300A/B) | 0.65 | 245,324 | 0.00% | | Maximum Temperature at ESP Inlet (TI-6002A/B) | 0 | 245,324 | 0.00% | | Maximum Total Chlorine Feed Rate
(WQI-9000CL) | 0 | 245,324 | 0.00% | | Maximum Total Low Volatile Metals
Feed Rate (WQI-9000LV) | 0 | 245,324 | 0.00% | | Maximum Total Mercury Feed Rate
(WQI-9000M) | 0 | 245,324 | 0.00% | | Maximum Total Pumpable Low Volatile
Metals Feed Rate (WQI-9000PLV) | 0 | 245,324 | 0.00% | | Maximum Total Semi volatile Metals
Feed Rate (WQI-9000SV) | 0 | 245,324 | 0.00% | | Maximum Total Waste Feed Rate (WQI-9000F) | 0 | 245,324 | 0.00% | | Minimum Feed Lance Atomization Pressure | 0 | 245,324 | 0.00% | | Minimum Kiln Temperature (TI-
4300A/B) | 0 | 245,324 | 0.00% | | Minimum Loc. 1 Carbon Feed Pressure
(PI-5732) | 0 | 245,324 | 0.00% | | Excess Emissions | Total
Duration(min) | Total Operating time of affected source during the reporting period (min) | % Of total source operating time during which excess emissions occurred | |--|------------------------|---|---| | Minimum Loc. 2 Carbon Feed Pressure
(PI-7132) | 0 | 245,324 | 0.00% | | Minimum Loc. 1 Carbon Feed Rate (WI-7003) | 33.86 | 245,324 | 0.01% | | Minimum Loc. 2 Carbon Feed Rate (WI-7002) | 32.56 | 245,324 | 0.01% | | Minimum Ring Jet Pressure Drop (DPI-7401) | 114.17 | 245,324 | 0.05% | | Minimum SCC Temperature (TI-
4310A/B) | 20.9 | 245,324 | 0.01% | | Minimum Scrubber (1 st and 2 nd Packed
Bed) Pressure Drop | 0 | 245,324 | 0.00% | | Minimum Scrubber (1 st and 2 nd Packed
Bed, combined) Liquid Flow Rate (FQI-
7201) | 133.2 | 245,324 | 0.05% | | Minimum Scrubber (3 rd Stage) Liquid
pH (AI-7307A/B) | 56.54 | 245,324 | 0.02% | | Minimum Scrubber (Ring Jet)
Błowdown (FI-7403) | 0 | 245,324 | 0.00% | | Minimum Scrubber (Ring Jet) Liquid
Flow Rate (FI-7404A/B) | 0 | 245,324 | 0.00% | | Minimum Scrubber (Ring Jet) Tank
Level (LIC-7401) | 0 | 245,324 | 0.00% | | ТНС | 2191.86 | 245,324 | 0.89% | | ESP Controls | 267.47 | 245,324 | 0.11% | | Total Duration | 2851,21 | 245,324 | 1:16% | Summary of causes of excess emissions / parameter exceedances (% of total duration by cause): | TYPE | Sum Of Duration | % of Total Duration | |----------------------------|-----------------|---------------------| | Startup/shutdown | 0 | 0.00% | | Control Equipment Problems | 261.3 | 9.16% | | Process Problems | 897.61 | 31.48% | | Other unknown causes | 1199.28 | 42.06% | | Other known causes | 493.02 | 17.29% | | | 2851.21 | 100.00% | #### D. CMS Performance Summary Complete the following CMS performance summary table for each affected source: (63.10(e)(3)(vi)(J)) | | Total duration of CMS downtime ¹ | |--------------|--| | 0 minutes | | | | Total operating time of affected source during the reporting period | | 245,324 min | 1 oral operating time of affected source during the reporting period | | 1245.124 min | | | Percent of total source operating time during wh | ich CMS were down | |--|-------------------| | 0.00 % | | ¹ Heritage Thermal Services maintains redundant CMS equipment in most cases to prevent CMS downtime. There were no periods during this time that this redundancy did not prevent CMS downtime. | Summary of causes of CMS downtime (percent of downtime by cause) | Minutes | |--|---------| | Monitoring equipment malfunctions | 0 | | Non-monitoring equipment malfunctions | 0 | | Quality assurance / quality control calibrations | 0 | | Other known causes | 0 | | Other unknown causes | 0 | #### E. CMS, Process, or Control Changes | 1. Hav | e you | made any c | hanges in | . CMS, processes | s, or control | s since the | last reporting | |--------|-------|------------|-----------|--|---------------|--|----------------| | - peri | od? | | | CALIFORNIA POLICIA POL | | PAIR AND | | | ĪП | Vec | ⊠No. | (if no | end of form) (6' | 3 10(2)(3)(v | i)(K)) | | 2. If you answered yes, please describe the changes below: #### END OF REPORT bcc: Env. Dept Stewart Fletcher Bob Buchheit Kevin Lloyd file name: environ/MACT/HWC MACT/exceedances/semiannual2014a ECF: 2014/MACT/ Semiannual A